Burkhard Militzer
Specialty areas
Computer Simulations of materials in planetary interiors, Equation of State Calculations, First-principle Simulation Techniques.
Research Interests
In my research, I use computer simulations to understand the interior and evolution of giant planets. Materials in planetary interiors are exposed to extreme temperature and pressure conditions that cannot yet be reached with laboratory experiments. Instead we rely on highly accurate first-principles computer simulations techniques. With these methods, we recently explained why neon is depleted in Jupiter’s atmosphere and provided strong, though indirect evidence for helium rain to occur in giant planets. Our recent simulations predict core erosion to occur in gas giant planets.
Furthermore I study materials in the deep mantle of our planet and compare my results with static and dynamic high pressure experiments. In some cases, computer simulations provide new insight into properties of materials that cannot be obtained with experiments. In other cases we use them to make predictions for the state of matter at these extreme pressures. Recent examples include fluid helium and water ice at megabar pressures.
My background is in the field of theoretical condensed matter physics and I am interested in theory and simulation of novel materials under extreme conditions. I use a variety of first-principles simulation methods including path integral Monte Carlo, groundstate quantum Monte Carlo, and density functional molecular dynamics.
Research Group
Kevin Driver, postdoctorial researcher
Francois Soubiran, postdoctorial researcher
Shuai Zhang, graduate student
Sean Wahl, graduate student
Tanis Leonhardi, graduate student
Formerly in my group at UCB:
Hugh F. Wilson, associate specialist, now at CSIRO in Melbourne.
Felipe Gonzalez, visiting Ph.D. student from the Universidad de Chile.
Stephen Stackhouse, now Lecturer at the University of Leeds.
Saad Khairallah, now at Lawrence Livermore National Laboratory.
Mike Wong, UCB undergraduate student, now PhD student at Caltech.
Benjamin Sherman, visited from CSUN in 2010 and 2011.
Members of my research group at the Carnegie Instiution of Washingon (2003-2007):
Jan Vorberger, postdoctorial researcher
Ken Esler, postdoctoral researcher
Rebekah Graham, Isaac Tamblyn, Seth Jacobsen (all REU summer students)
Publications
104. | L. Iess, W. M. Folkner, D. Durante, M. Parisi, Y. Kaspi, E. Galanti, T. Guillot, W. B. Hubbard, D. J. Stevenson, J. D. Anderson, D. R. Buccino, L. Gomez Casajus, A. Milani, R. Park, P. Racioppa, D. Serra, P. Tortora, M. Zannoni, H. Cao, R. Helled, J. I. Lunine, Y. Miguel, B. Militzer, S. Wahl, J. E. P. Connerney, S. M. Levin, S. J. Bolton, “Measurement of Jupiter’s asymmetric gravity field“, Nature 555 (2018) 220. |
103. | Y. Kaspi, E. Galanti, W. B. Hubbard, D. J. Stevenson, S. J. Bolton, L. Iess, T. Guillot, J. Bloxham, J. E. P. Connerney, H. Cao, D. Durante, W. M. Folkner, R. Helled, A. P. Ingersoll, S. M. Levin, J. I. Lunine, Y. Miguel, B. Militzer, M. Parisi, S. M. Wahl “Jupiter’s atmospheric jet streams extend thousands of kilometres deep“, Nature 555(2018) 223. |
102. | T. Guillot, Y. Miguel, B. Militzer, W. B. Hubbard, Y. Kaspi, E. Galanti, H. Cao, R. Helled, S. M. Wahl, L. Iess, W. M. Folkner, D. J. Stevenson, J. I. Lunine, D. R. Reese, A. Biekman, M. Parisi, D. Durante, J. E. P. Connerney, S. M. Levin & S. J. Bolton, “A suppression of differential rotation in Jupiter’s deep interior“, Nature 555 (2018) 227. |
101. | B. Militzer, S. Zhang, “Ab initio Simulations of Superionic H2O, H2O2, and H9O4Compounds“, accepted for publication in the AIP conference proceedings (2018). Also available on the arXiv. |
100. | S. Zhang, B. Militzer, L. X. Benedict, F. Soubiran, K. P. Driver, P. A. Sterne, “Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas“, J. Chem. Phys.148 (2018) 102318. Also available on the arXiv. |
99. | Y. Kaspi, T. Guillot, E. Galanti, Y. Miguel, R. Helled, W. B. Hubbard, B. Militzer, S. M. Wahl, S. Levin, J. E. P. Connerney, S. J. Bolton, “The effect of differential rotation on Jupiter’s low-degree even gravity moments”, Geophysical Research Letters 44(2017) 5960, doi:10.1002/2017GL073629. |
98. | S. Zhang, K. P. Driver, F. Soubiran, B. Militzer “First-principles Equation of State and Shock Compression Predictions of Warm Dense Hydrocarbons“, Phys. Rev. E 96(2017) 013204. |
97. | K. P. Driver, B. Militzer, “First-principles simulations of warm dense lithium fluoride“,Phys. Rev. E 95 (2017) 043205. Also availalbe on the arXiv. |
96. | S. M. Wahl, W. B. Hubbard, B. Militzer, T. Guillot, Y. Miguel, Y. Kaspi, R. Helled, D. Reese, N. Movshovitz, E. Galanti, S. Levin, J.E. Connerney, S.J. Bolton, “Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core“, Geophysical Research Letters 44 (2017) 4649, doi:10.1002/2017GL073160. |
95. | K. P. Driver, F. Soubiran, S. Zhang, B. Militzer, “Comparison of Path Integral Monte Carlo Simulations of Helium, Carbon, Nitrogen, Oxygen, Water, Neon, and Silicon Plasmas“, J. High Energy Density Physics 23 (2017) 81. |
94. | F. Soubiran, B. Militzer, K. P. Driver, S. Zhang, “Properties of hydrogen, helium, and silicon dioxide mixtures in giant planet interiors“, Physics of Plasmas 24 (2017) 041401. Also available on the arXiv. |
93. | S. Zhang, K. P. Driver, F. Soubiran, B. Militzer, “Equation of state and shock compression of warm dense sodium – A first-principle study“, J. Chem. Phys. 146(2017) 074505. Also available on the arXiv. |
92. | T. Leonhardi, B. Militzer, “Ab initio simulations of liquid carbon monoxide at high pressure“, J. High Energy Density Physics 22 (2017) 41. |
91. | Z. Li, J. Li, L. Rebecca, J. Liu, B. Militzer, “Determination of calcium carbonate and sodium carbonate melting curves up to Earth’s transition zone pressures with implications for the deep carbon cycle“, Earth and Planetary Science Letters 457(2017) 395. |
90. | S. Zhang, K. P. Driver, F. Soubiran, B. Militzer, “Path Integral Monte Carlo Simulations of Warm Dense Sodium“, J. High Energy Density Physics 21 (2016) 16. |
89. | B. Militzer, “Supercell Design for First-Principles Simulations of Solids and Application to Diamond, Silica, and Superionic Water“, J. High Energy Density Physics 21 (2016) 8. |
88. | S. X. Hu, B. Militzer, L. A. Collins, K. P. Driver, and J. D. Kress, “First-Principles Prediction of the Softening of the Silicon Shock Hugoniot Curve“, Phys. Rev. B 94(2016) 094109. Also available on the arXiv. |
87. | B. Militzer, F. Soubiran, S. M. Wahl, W. Hubbard, “Understanding Jupiter’s Interior“,J. Geophysical Research, 121 (2016) 1552. Also available on the arXiv. |
86. | S. M. Wahl, W. B. Hubbard, B. Militzer, “Tidal response of preliminary Jupiter model“, Astrophysical J. 831 (2016) 14. Also available on the arXiv. |
85. | F. Soubiran, B. Militzer, “The properties of heavy elements in giant planet envelopes“,Astrophysical J. 829 (2016) 14. Also available on the arXiv. |
84. | B. Militzer, “Computation of the High Temperature Coulomb Density Matrix in Periodic Boundary Conditions“, Computer Physics Communications 204 (2016) 88. Also available on the arXiv. |
83. | S. M. Wahl, W. B. Hubbard, B. Militzer, “The Concentric Maclaurin Spheroid method with tides and a rotational enhancement of Saturn’s tidal response“, Icarus 282 (2017) 183. Also available on the arXiv. |
82. | W. B. Hubbard, B. Militzer, “A preliminary Jupiter model“, Astrophysical Journal 820(2016) 80. Also available on the arXiv. |
81. | K. P. Driver, B. Militzer, “First-Principles Equation of State Calculations of Warm Dense Nitrogen“, Phys. Rev. B 93 (2016) 064101. |
80. | S. Zhang, S. Cottaar, T. Liu, S. Stackhouse, B. Militzer, “High-pressure, temperature elasticity of Fe- and Al-bearing MgSiO3: implications for the Earth’s lower mantle“,Earth and Planetary Science Letters 434 (2016) 264. |
79. | B. Militzer, K. P Driver, “Development of Path Integral Monte Carlo Simulations with Localized Nodal Surfaces for Second-Row Elements“, Phys. Rev. Lett. 115 (2015) 176403. |
78. | K. P. Driver, F. Soubiran, Shuai Zhang, and B. Militzer “First-principles equation of state and electronic properties of warm dense oxygen“, J. Chem. Phys. 143 (2015) 164507. |
77. | F. Soubiran, B. Militzer, “Miscibility calculations for water and hydrogen in giant planets“, Astrophys. J. 806 (2015) 228. |
76. | S. X. Hu, V. N. Goncharov, T. R. Boehly, R. L. McCrory, S. Skupsky, L. A. Collins, J. D. Kress, B. Militzer, “Impact of First-Principles Properties of Deuterium-Tritium on Inertial Confinement Fusion Target Designs“, Physics of Plasmas 22 (2015) 056304. |
75. | F. Soubiran, B. Militzer, “Hydrogen-Water Mixtures in Giant Planet Interiors Studied with Ab Initio Simulations“, J. High Energy Density Physics 17 (2015) 157. |
74. | K. Driver, B. Militzer, “First-principles simulations and shock Hugoniot calculations of warm dense neon“, Phys. Rev. B 91 (2015) 045103. |
73. | S. Wahl, B. Militzer, “High-temperature miscibility of iron and rock during terrestrial planet formation“, Earth and Planetary Science Letters 410 (2015) 25. |
72. | Y. Lin, R. E. Cohen, S. Stackhouse, K. P. Driver, B. Militzer, L. Shulenburger and J. Kim, “Equations of state and stability of MgSiO3 perovskite and post-perovskite phases from quantum Monte Carlo simulations“, Phys. Rev. B 90 (2014) 184103, available on the archive. |
71. | H. F. Wilson, B. Militzer, “Interior phase transformations and mass-radius relationships of silicon-carbon planets“, Astrophys. J. 973 (2014) 34. |
70. | F. Gonzalez-Cataldo, H. F. Wilson, B. Militzer, “Solubility of silica in metallic hydrogen: implications for the stability of rocky cores in giant planets“, Astrophys. J.787 (2014) 79. |
69. | P. Kaercher, B. Militzer, H.-R. Wenk, “Ab initio calculatios of elastic constants in plagioclase feldspars“, American Mineralogist 99 (2014) 2344. |
68. | L. X. Benedict, K. P. Driver, S. Hamel, B. Militzer, T. Qi, A. A. Correa, A. Saul, E. Schwegler, “A multiphase equation of state for carbon addressing high pressures and temperatures”, Phys. Rev. B 89 (2014) 224109, available on cond-mat. |
67. | S. M. Wahl, H. F. Wilson, B. Militzer, “Solubility of iron in metallic hydrogen and stability of dense cores in giant planets“, Astrophysical Journal 773 (2013) 95, available on astro-ph. |
66. | B. Militzer, W. B. Hubbard, “Ab Initio Equation of State for Hydrogen-Helium Mixtures with Recalibration of the Giant-Planet Mass-Radius Relation“, Astrophysical Journal 774 (2013) 148, available on astro-ph. |
65. | B. K. Godwal, S. Stackhouse, J. Yan, S. Speziale, B. Militzer, R. Jeanloz, “Co-Determination of Crystal Structures at High Pressure: Combined Application of Theory and Experiment to the Intermetallic Compound AuGa2“, Phys. Rev. B Rapid Comm. 87 (2013) 100101. |
64. | B. Militzer, “Equation of state calculations of hydrogen-helium mixtures in solar and extrasolar giant planets“, Physical Review B 87 (2013) 014202. |
63. | H. F. Wilson, M. L. Wong, B. Militzer, “Superionic to superionic phase change in water: consequences for the interiors of Uranus and Neptune“, Physical Review Letters110 (2013) 151102, also available on astro-ph. |
62. | S. Zhang, H. F. Wilson, K. P. Driver, B. Militzer, “H4O and other hydrogen-oxygen compounds at giant-planet core pressures“, Physical Review B 87 (2013) 024112, also available on condmat. |
61. | B. L. Sherman, H. F. Wilson, D. Weeraratne, and B. Militzer, “Ab Initio Simulations of Hot, Dense Methane During Shock Experiments“, Physical Review B 86 (2012) 224113, also available on condmat. |
60. | B. Militzer, “Ab Initio Investigation of a Possible Liquid-Liquid Phase Transition in MgSiO3 at Megabar Pressures“, Journal of High Energy Density Physics 9 (2013) 152, available also on condmat. |
59. | K. P. Driver, B. Militzer, “All-Electron Path Integral Monte Carlo Simulations of Warm Dense Matter: Application to Water and Carbon Plasmas“, Phys. Rev. Lett. 108(2012) 115502. |
58. | H. F. Wilson, B. Militzer, “Rocky core solubility in Jupiter and giant exoplanets“,Phys. Rev. Lett. 108 (2012) 111101. Suggested read by PRL editor. Also available on astro-ph. |
57. | S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, “FPEOS: A First-Principles Equation of State Table of Deuterium for Inertial Confinement Fusion Applications“,Phys. Rev. B, 84 (2011) 224109, also available on cond-mat. |
56. | H. F. Wilson, B. Militzer, “Solubility of water ice in metallic hydrogen: consequences for core erosion in gas giant planets“, Astrophys. J. 745 (2012) 54, also available on astro-ph. |
55. | B. Militzer, “Bonding and Electronic Properties of Ice at High Pressure“, Intern. J. Quantum Chemistry 112 (2011) 314, also available on cond-mat. |
54. | L. Miyagi, W. Kanitpanyacharoen, S. Stackhouse, B. Militzer, H.-R. Wenk, “The Enigma of Post-Perovskite Anisotropy: Deformation versus Transformation Textures”,Physics and Chemistry of Minerals 38 (2011) 665, DOI: 10.1007/10.1007/s00269-011-0439-y. |
53. | B. Militzer, H. F. Wilson, “New Phases of Water Ice Predicted at Megabar Pressures“,Phys. Rev. Lett. 105 (2010) 195701, available on cond-mat. |
52. | S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, “Strong-Coupling and Degeneracy Effects in Inertial Confinement Fusion Implosions“, Phys. Rev. Lett. 104(2010) 235003. |
51. | B. Militzer, H.-R. Wenk, S. Stackhouse, and L. Stixrude, “First-Principles Calculation of the Elastic Moduli of Sheet Silicates and their Application to Shale Anisotropy“, American Mineralogist 96 (2011) 125. |
50. | A. R. Rhoden, B. Militzer, E. M. Huff, T. A. Hurford, M. Manga, and M. A. Richards, “Constraints on Europa’s rotational dynamics from modeling of tidally-driven fractures”, Icarus 210 (2010) 770. |
49. | H. F. Wilson and B. Militzer, “Sequestration of noble gases in giant planet interiors“, Phys. Rev. Lett. 104 (2010) 121101. Read commentary by J. Fortney “Peering into Jupiter” in Physics 3 (2010) 26, UC Berkeley’s press release, Discovery Channel and LA Times articles. |
48. | K. P. Esler, R. E. Cohen, B. Militzer, J. Kim, R.J. Needs, and M.D. Towler, “Fundamental high pressure calibration from all-electron quantum Monte Carlo calculations“, Phys. Rev. Lett. 104 (2010) 185702. |
47. | K. P. Driver, R. E. Cohen, Z. Wu, B. Militzer, P. Lopez Rios, M. D. Towler, R. J. Needs, and J. W. Wilkins “Quantum Monte Carlo for minerals at high pressures: Phase stability, equations of state, and elasticity of silica“, Proc. Nat. Acad. Sci. 107 (2010) 9519. |
46. | P. Beck, A.F. Goncharov, J. A. Montoya, V.V. Struzhkin, B. Militzer, R.J. Hemley, and H.-K. Mao, ”Response to “Comment on ‘Measurement of thermal diffusivity at high-pressure using a transient heating technique’””, Appl. Phys. Lett. 95 (2009) 096101. |
45. | J. J. Fortney, I. Baraffe, B. Militzer, chapter “Interior Structure and Thermal Evolution of Giant Planets”, in “Exoplanets”, ed. S. Seager, Arizona Space Science series (2009). |
44. | B. Militzer, “Correlations in Hot Dense Helium“, J Phys. A 42 (2009) 214001, cond-mat/09024281. |
43. | J. J. Fortney, S. H. Glenzer, M. Koenig, B. Militzer, D. Saumon, and D. Valencia, “Frontiers of the Physics of Dense Plasmas and Planetary Interiors: Experiment, Theory, Applications“, Physics of Plasmas 16 (2008) 041003. |
42. | B. Militzer and W. B. Hubbard, “Comparison of Jupiter Interior Models Derived from First-Principles Simulations“, Astrophysics and Space Science 322 (2009) 129, astro-ph/08074266. |
41. | S. A. Khairallah and B. Militzer, “First-Principles Studies of the Metallization and the Equation of State of Solid Helium“, Phys. Rev. Lett. 101 (2008) 106407, physics/08054433. |
40. | B. Militzer, “Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Hot, Dense Helium“, Phys. Rev. B 79 (2009) 155105, cond-mat/08050317. |
39. | B. Militzer, W. B. Hubbard, J. Vorberger, I. Tamblyn, and S.A. Bonev, “A Massive Core in Jupiter Predicted From First-Principles Simulations“, Astrophysical Journal Letters 688 (2008) L45, astro-ph/08074264. |
38. | P. Beck, A. F. Goncharov, V. Struzhkin, B. Militzer, H.-K. Mao, and R. J. Hemley “Measurement of thermal diffusivity at high pressure using a transient heating technique“, Appl. Phys. Lett. 91 (2007) 181914. |
37. | B. Militzer, W. B. Hubbard, “Implications of Shock Wave Experiments with Precompressed Materials for Giant Planet Interiors“, AIP conference proceedings 955(2007) 1395. |
36. | J. Vorberger, I. Tamblyn, S.A. Bonev, B. Militzer, “Properties of Dense Fluid Hydrogen and Helium in Giant Gas Planets“, Contrib. Plasma Phys. 47 (2007) 375. |
35. | S. Seager, M. Kuchner, C. A. Hier-Majumder, B. Militzer, “Mass-radius relationship of solid exoplanets“, Astrophys. J. 669 (2007) 1279. |
34. | V. V. Struzhkin, B. Militzer, W. Mao, R. J. Hemley, H.-k. Mao, “Hydrogen Storage in Clathrates”, Chem. Rev. 107 (2007) 4133. |
33. | G. D. Cody, H. Yabuta, T. Araki, L. D. Kilcoyne, C. M. Alexander, H. Ade, P. Dera, M. Fogel, B. Militzer, B. O. Mysen, “An Organic thermometer for Chondritic Parent Bodies”, Earth. Planet. Sci. Lett. 272 (2008) 446. |
32. | J. Vorberger, I. Tamblyn, B. Militzer, S.A. Bonev, “Hydrogen-Helium Mixtures in the Interiors of Giant Planets“, Phys. Rev. B 75 (2007) 024206, cond-mat/0609476. |
31. | B. Militzer, R. J Hemley, “Solid oxygen takes shape”, Nature (News & Views), 443(2006) 150. |
30. | B. Militzer, “First Principles Calculations of Shock Compressed Fluid Helium“, Phys. Rev. Lett. 97 (2006) 175501. |
29. | B. Militzer, R. L. Graham, “Simulations of Dense Atomic Hydrogen in the Wigner Crystal Phase“, J. Phys. Chem. Solids, 67 (2006) 2136. |
28. | B. Militzer, “Hydrogen-Helium Mixtures at High Pressure“, J. Low Temp. Phys. 139(2005) 739. |
27. | B. Militzer, E. L. Pollock, “Equilibrium Contact Probabilities in Dense Plasmas“, Phys. Rev. B, 71 (2005) 134303. |
26. | J.-F. Lin, B. Militzer, V. V. Struzhkin, E. Gregoryanz, R. J. Hemley, H.-k. Mao, “High Pressure-Temperature Raman Measurements of H2O Melting to 22 GPa and 900 K“, J. Chem. Phys. 121 (2004) 8423. |
25. | B. Militzer, E. L. Pollock, D. Ceperley, “Path Integral Monte Carlo Calculation of the Momentum Distribution of the Homogeneous Electron Gas at Finite Temperature“, submitted to Phys. Rev. B (2003). |
24. | E. L. Pollock, B. Militzer, “Dense Plasma Effects on Nuclear Reaction Rates“, Phys. Rev. Lett. 92 (2004) 021101. |
23. | S. A. Bonev, B. Militzer, G. Galli, “Dense liquid deuterium: Ab initio simulation of states obtained in gas gun shock wave experiments“, Phys. Rev. B 69 (2004) 014101. |
22. | F. Brglez, X.Y. Li, M.F. Stallmann, and B. Militzer, “Evolutionary and Alternative Algorithms: Reliable Cost Predictions for Finding Optimal Solutions to the LABS Problem“, Information Sciences, in press, 2004. |
21. | B. Militzer, F. Gygi, G. Galli, “Structure and Bonding of Dense Liquid Oxygen from First Principles Simulations“, Phys. Rev. Lett. 91 (2003) 265503. |
20. | F. Brglez, X.Y. Li, M.F. Stallmann, and B. Militzer, “Reliable Cost Predictions for Finding Optimal Solutions to LABS Problem: Evolutionary and Alternative Algorithms“, Proceedings of The Fifth International Workshop on Frontiers in Evolutionary Algorithms, Cary, NC (2003). |
19. | B. Militzer, “Path Integral Calculation of Shock Hugoniot Curves of Precompressed Liquid Deuterium“, J. Phys. A: Math. Gen. 63 (2003) 6159. |
18. | B. Militzer, E. L. Pollock, “Lowering of the Kinetic Energy in Interacting Quantum Systems“, Phys. Rev. Lett. 89 (2002) 280401. |
17. | B. Militzer, D. M. Ceperley, J. D. Kress, J. D. Johnson, L. A. Collins, S. Mazevet, “Calculation of a Deuterium Double Shock Hugoniot from Ab Initio Simulations“, Phys. Rev. Lett. 87 (2001) 275502. |
16. | B. Militzer, D. M. Ceperley, “Path Integral Monte Carlo Simulation of the Low-Density Hydrogen Plasma“, Phys. Rev. E 63 (2001) 066404. |
15. | B. Militzer, D. M. Ceperley, “Path Integral Monte Carlo Calculation of the Deuterium Hugoniot“, Phys. Rev. Lett. 85 (2000) 1890. |
14. | B. Militzer, “Path Integral Monte Carlo Simulations of Hot Dense Hydrogen“, Ph.D. thesis, University of Illinois at Urbana-Champaign (2000). |
13. | B. Militzer, E. L. Pollock, “Variational Density Matrix Method for Warm Condensed Matter and Application to Dense Hydrogen“, Phys. Rev. E 61 (2000) 3470. |
12. | B. Militzer, E. L. Pollock, “Introduction to the Variational Density Matrix Method and its Application to Dense Hydrogen“, in Strongly Coupled Coulomb Systems 99, ed. by C. Deutsch, B. Jancovici, and M.-M. Gombert, J. Phys. France IV 10 (2000) 315. |
11. | B. Militzer, W. Magro, and D. Ceperley, “Characterization of the State of Hydrogen at High Temperature and Density“, Contr. Plasma Physics 39 (1999) 1-2, 151. |
10. | W. Magro, B. Militzer, D. Ceperley, B. Bernu, and C. Pierleoni, “Restricted Path Integral Monte Carlo Calculations of Hot, Dense Hydrogen“, in Strongly Coupled Coulomb Systems, ed. by G. J. Kalman, J. M. Rommel and K. Blagoev, Plenum Press, New York NY, 1998. |
9. | W. Ebeling, B. Militzer, and F. Schautz, “Quasi-Classical Theory and Simulation of Two-Component Plasmas“, in Strongly Coupled Coulomb Systems, ed. by G. J. Kalman, J. M. Rommel and K. Blagoev, Plenum Press, New York NY, 1998. |
8. | B. Militzer, W. Magro, and D. Ceperley, “Fermionic Path-Integral Simulation of Dense Hydrogen“, in Strongly Coupled Coulomb Systems, ed. by G. J. Kalman, J. M. Rommel and K. Blagoev, Plenum Press, New York NY, 1998. |
7. | B. Militzer, M. Zamparelli, and D. Beule, “Evolutionary Search for Low Autocorrelated Binary Sequences“, IEEE Trans. Evol. Comput. 2 (1998) 34-39. |
6. | W. Ebeling, B. Militzer, and F. Schautz, “Quasi-classical Theory and Simulations of Hydrogen-like Quantum Plasmas“, Contr. Plasma Physics 37 (1997) 2-3, 137. |
5. | W. Ebeling and B. Militzer, “Quantum Molecular Dynamics of Partially Ionized Plasmas“, Phys. Lett. A 226 (1997) 298 |
4. | B. Militzer, “Quanten-Molekular-Dynamik mit reaktiven Freiheitsgraden”, in Dynamik, Evolution, Strukturen, ed. J. Freund, Dr. Köster publishing company, Berlin, 1996. |
3. | B. Militzer, “Quanten-Molekular-Dynamik von Coulomb-Systemen“, Logos publishing company, Berlin, 1996, ISBN 3-931216-08-X |
2. | B.-D. Dörfel and B. Militzer, “Test of Modular Invariance for Finite XXZ Chains“, J. Phys. A: Math. Gen. 26 (1993) 4875. |
1. | A. Richter, G. Kessler, and B. Militzer, “Growth-kinectics of thin-films deposited by laser ablation”, 473-478, in Laser Treatment of Materials, ed. by Barry L. Mordike, Oberursel : DGM Informationsgesellschaft, 1992. |